17 research outputs found

    A renormalization procedure for tensor models and scalar-tensor theories of gravity

    Get PDF
    Tensor models are more-index generalizations of the so-called matrix models, and provide models of quantum gravity with the idea that spaces and general relativity are emergent phenomena. In this paper, a renormalization procedure for the tensor models whose dynamical variable is a totally symmetric real three-tensor is discussed. It is proven that configurations with certain Gaussian forms are the attractors of the three-tensor under the renormalization procedure. Since these Gaussian configurations are parameterized by a scalar and a symmetric two-tensor, it is argued that, in general situations, the infrared dynamics of the tensor models should be described by scalar-tensor theories of gravity.Comment: 20 pages, 3 figures, references added, minor correction

    Matrix geometries and Matrix Models

    Get PDF
    We study a two parameter single trace 3-matrix model with SO(3) global symmetry. The model has two phases, a fuzzy sphere phase and a matrix phase. Configurations in the matrix phase are consistent with fluctuations around a background of commuting matrices whose eigenvalues are confined to the interior of a ball of radius R=2.0. We study the co-existence curve of the model and find evidence that it has two distinct portions one with a discontinuous internal energy yet critical fluctuations of the specific heat but only on the low temperature side of the transition and the other portion has a continuous internal energy with a discontinuous specific heat of finite jump. We study in detail the eigenvalue distributions of different observables.Comment: 20 page

    Probing the fuzzy sphere regularisation in simulations of the 3d \lambda \phi^4 model

    Get PDF
    We regularise the 3d \lambda \phi^4 model by discretising the Euclidean time and representing the spatial part on a fuzzy sphere. The latter involves a truncated expansion of the field in spherical harmonics. This yields a numerically tractable formulation, which constitutes an unconventional alternative to the lattice. In contrast to the 2d version, the radius R plays an independent r\^{o}le. We explore the phase diagram in terms of R and the cutoff, as well as the parameters m^2 and \lambda. Thus we identify the phases of disorder, uniform order and non-uniform order. We compare the result to the phase diagrams of the 3d model on a non-commutative torus, and of the 2d model on a fuzzy sphere. Our data at strong coupling reproduce accurately the behaviour of a matrix chain, which corresponds to the c=1-model in string theory. This observation enables a conjecture about the thermodynamic limit.Comment: 31 pages, 15 figure

    Covariant Field Equations, Gauge Fields and Conservation Laws from Yang-Mills Matrix Models

    Full text link
    The effective geometry and the gravitational coupling of nonabelian gauge and scalar fields on generic NC branes in Yang-Mills matrix models is determined. Covariant field equations are derived from the basic matrix equations of motions, known as Yang-Mills algebra. Remarkably, the equations of motion for the Poisson structure and for the nonabelian gauge fields follow from a matrix Noether theorem, and are therefore protected from quantum corrections. This provides a transparent derivation and generalization of the effective action governing the SU(n) gauge fields obtained in [1], including the would-be topological term. In particular, the IKKT matrix model is capable of describing 4-dimensional NC space-times with a general effective metric. Metric deformations of flat Moyal-Weyl space are briefly discussed.Comment: 31 pages. V2: minor corrections, references adde

    A projective Dirac operator on CP^2 within fuzzy geometry

    Full text link
    We propose an ansatz for the commutative canonical spin_c Dirac operator on CP^2 in a global geometric approach using the right invariant (left action-) induced vector fields from SU(3). This ansatz is suitable for noncommutative generalisation within the framework of fuzzy geometry. Along the way we identify the physical spinors and construct the canonical spin_c bundle in this formulation. The chirality operator is also given in two equivalent forms. Finally, using representation theory we obtain the eigenspinors and calculate the full spectrum. We use an argument from the fuzzy complex projective space CP^2_F based on the fuzzy analogue of the unprojected spin_c bundle to show that our commutative projected spin_c bundle has the correct SU(3)-representation content.Comment: reduced to 27 pages, minor corrections, minor improvements, typos correcte

    A Gauge-Invariant UV-IR Mixing and The Corresponding Phase Transition For U(1) Fields on the Fuzzy Sphere

    Get PDF
    From a string theory point of view the most natural gauge action on the fuzzy sphere {\bf S}^2_L is the Alekseev-Recknagel-Schomerus action which is a particular combination of the Yang-Mills action and the Chern-Simons term . Since the differential calculus on the fuzzy sphere is 3-dimensional the field content of this model consists naturally of a 2-dimensional gauge field together with a scalar fluctuation normal to the sphere . For U(1) gauge theory we compute the quadratic effective action and shows explicitly that the tadpole diagrams and the vacuum polarization tensor contain a gauge-invariant UV-IR mixing in the continuum limit L{\longrightarrow}{\infty} where L is the matrix size of the fuzzy sphere. In other words the quantum U(1) effective action does not vanish in the commutative limit and a noncommutative anomaly survives . We compute the scalar effective potential and prove the gauge-fixing-independence of the limiting model L={\infty} and then show explicitly that the one-loop result predicts a first order phase transition which was observed recently in simulation . The one-loop result for the U(1) theory is exact in this limit . It is also argued that if we add a large mass term for the scalar mode the UV-IR mixing will be completely removed from the gauge sector . It is found in this case to be confined to the scalar sector only. This is in accordance with the large L analysis of the model . Finally we show that the phase transition becomes harder to reach starting from small couplings when we increase M .Comment: 41 pages, 4 figures . Introduction rewritten extensively to include a summary of the main results of the pape

    Towards Noncommutative Fuzzy QED

    Get PDF
    We study in one-loop perturbation theory noncommutative fuzzy quenched QED_4. We write down the effective action on fuzzy S**2 x S**2 and show the existence of a gauge-invariant UV-IR mixing in the model in the large N planar limit. We also give a derivation of the beta function and comment on the limit of large mass of the normal scalar fields. We also discuss topology change in this 4 fuzzy dimensions arising from the interaction of fields (matrices) with spacetime through its noncommutativity.Comment: 33 page

    Numerical simulations of a non-commutative theory: the scalar model on the fuzzy sphere

    Get PDF
    We address a detailed non-perturbative numerical study of the scalar theory on the fuzzy sphere. We use a novel algorithm which strongly reduces the correlation problems in the matrix update process, and allows the investigation of different regimes of the model in a precise and reliable way. We study the modes associated to different momenta and the role they play in the ``striped phase'', pointing out a consistent interpretation which is corroborated by our data, and which sheds further light on the results obtained in some previous works. Next, we test a quantitative, non-trivial theoretical prediction for this model, which has been formulated in the literature: The existence of an eigenvalue sector characterised by a precise probability density, and the emergence of the phase transition associated with the opening of a gap around the origin in the eigenvalue distribution. The theoretical predictions are confirmed by our numerical results. Finally, we propose a possible method to detect numerically the non-commutative anomaly predicted in a one-loop perturbative analysis of the model, which is expected to induce a distortion of the dispersion relation on the fuzzy sphere.Comment: 1+36 pages, 18 figures; v2: 1+55 pages, 38 figures: added the study of the eigenvalue distribution, added figures, tables and references, typos corrected; v3: 1+20 pages, 10 eps figures, new results, plots and references added, technical details about the tests at small matrix size skipped, version published in JHE

    Emergent Geometry and Gravity from Matrix Models: an Introduction

    Full text link
    A introductory review to emergent noncommutative gravity within Yang-Mills Matrix models is presented. Space-time is described as a noncommutative brane solution of the matrix model, i.e. as submanifold of \R^D. Fields and matter on the brane arise as fluctuations of the bosonic resp. fermionic matrices around such a background, and couple to an effective metric interpreted in terms of gravity. Suitable tools are provided for the description of the effective geometry in the semi-classical limit. The relation to noncommutative gauge theory and the role of UV/IR mixing is explained. Several types of geometries are identified, in particular "harmonic" and "Einstein" type of solutions. The physics of the harmonic branch is discussed in some detail, emphasizing the non-standard role of vacuum energy. This may provide new approach to some of the big puzzles in this context. The IKKT model with D=10 and close relatives are singled out as promising candidates for a quantum theory of fundamental interactions including gravity.Comment: Invited topical review for Classical and Quantum Gravity. 57 pages, 5 figures. V2,V3: minor corrections and improvements. V4,V5: some improvements, refs adde
    corecore